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On the low-Reynolds-number flow in a helical pipe 
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(Received 20 September 1979 and in revised form 3 October 1980) 

A non- rth gonal helical co-ordinate system is introduced to study the effect of 
curvature and torsion on the flow in a helical pipe. It is found that both curvature and 
torsion induce non-negligible effects when the Reynolds number is less than about 40. 
When the Reynolds number is of order unity, torsion induces a secondary flow 
consisting of one single recirculating cell while curvature causes an increased flow rate. 
These effects are quite different from the two recirculating cells and decreased flow 
rate at high Reynolds numbers. 

1. Introduction 
Fluid flow in helical pipes occurs in many engineering processes, particularly those 

involving viscometry or convective heat transfer. Dean (1927,1928) first studied the 
flow in a curved pipe using a concentric toroidal co-ordinate system. Numerous authors 
subsequently utilized Dean’s co-ordinates to investigate the various aspects of the 
flow in a toroidal pipe. 

Can the results from the analysis of a toroidal pipe be applied to a helical pipe? 
Helical pipes involve both a curvature and a torsion or twist. None of the two dozen 
plus existing theoretical papers on the flow in curved pipes considered non-zero 
torsion. Only a few papers (theoretically, Topakoglu 1967 and Larrain & Bonilla 1970; 
numerically, Truesdell & Adler 1970 and Austin & Seader 1973) consider the effect of 
non-zero curvature. The other papers, including Dean’s, study the flow in the limit of 
zero curvature. 

The present work attempts to determine whether curvature and torsion should be 
considered in the flow in a helical pipe through the introduction of a non-orthogonal, 
helical co-ordinate system. 

2. Navier-Stokes equations with one axis following a space curve 
Let one axis be described by 

R = X ( s )  i + Y(s)  j + Z(s) k, (1) 

where s represents arc length along this axis and i, j, k are unit vectors in Cartesian 
directions. The tangent T, normal N and binormal B can be defined by 
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FIGURE 1. The co-ordinate system. 

Here K is the curvature, and T, N, B are orthogonal unit vectors. The Frenet 

d B  _ -  - TB-KT,  - = -7N,  ds ds 
formulae give dN 

( 3 )  

where T is the torsion. We construct a new co-ordinate system ( r ,  8, s) such that any 
Cartesian position vector x can be expressed as 

(see figure 1). Using equations ( 2 , 3 , 4 ) ,  we obtain 

x = R(s) + r cos BN(s) + r sin OB(s) 

d x  . dx = (dr) ,  + r2(d8), + [( 1 - KT cos 8)% + ~ ~ r ~ ]  (d.s)2 + 2~r2ds  d8. 

(4) 

( 5 )  
The description of any point in this system is unique for r < K - ~ .  Notice that the 

last term in ( 5 )  indicates non-orthogonality of ( r ,  0, s). If torsion T is zero the system 
reduces to the orthogonal co-ordinates of Dean (1927) and Murata, Miyake & Inaba 
(1976). From equation ( 5 ) ,  the metric tensors are found to be 

g22 = r2, g Z 2  = G/r2M,  
g,, = G,  g3, = 1/M, g,, = T r 2 ,  923  = - T I M ,  

G = (1-mcosO)2+T2r2, M = (l-KrCOSO)2. 

(6) 

(7) 

gll  = g l l  = 1, 

g12 = 912 = gl, = 913 = 0 

The non-zero Christoffel symbols are 

1 aG r& = - r ,  r;, = - 7r,  = - -- 
2 ar ’ 

1 ri1 = ;, 
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FIGURE 2. Helical coils with K a  = 0.1. (a) 7a = 0.3, 
(a) 7a = 0.05, (c) 7a = 0.02, (d) ?a = 0-01. 

The Navier-Stokes equations and the continuity equation in tensorial form are 

Here the covariant derivative is 

with the summation convention implied. Let 

XI = T ,  5 2  = 6, x 3  = s, (12) 

and (u, v, w) be the physical velocity components in (r ,  8, s) respectively. Then the 
tensorial velocity components vi are related by 

v1 = u, v2 = v/r) v3 = w/JC.  (13) 

3. Formation of the equations of the flow in a helical pipe 
Let the s axis be described by the helix 

S S bs 
(b2+ c2) t j  + kJ R = CCOS- i+csin 

(b2 + c2)4 

where b and c are constants. Then 
C b 

b2+c2’ b2 + c2 
K = -  r=- 

Figure 2 shows the general shapes of helical pipes with the same radius a and the 
same curvature K .  Only when torsion r is zero do we obtain the toroidal pipes studied 
by previous authors. 

We shall make the following assumptions: 
(1)  The pipe is long enough for the end effects to be ignored. We expect the velocities 

are independent of s and the pressure to be a linear function of s. Suppose the mean 
7 F L M  108 
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pressure gradient @/ds is given. We can then define a velocity scale U by 

U = a2 (-Z). 
( 2 )  Both curvature and torsion are small, i.e. 

K a = s < l ,  ra=sEh&l, ( 1 7 )  

where h is a constant of order unity. These assumptions include a wide variety of 
realistic helical pipes. 

(3) The flow is steady and laminar. The Reynolds number, defined as R = Ua/v ,  is 
order unity. As we shall see later, the influences of curvature and torsion are most 
prominent at low Reynolds numbers. Low-Reynolds-number flow occurs in visco- 
metry that uses coiled capillaries. 

Notice that,in the case of a straight circular pipe,our R becomes the usualReynolds 
of number based on mean velocity and diameter. The Dean number K is defined by 

The dependent and independent variables are then normalized as follows: 

q = r/a,  x = s/a, (19 )  

(20) 

u = U(su, + E2U2 + . . .), 21 = U(svl + €2V2 + . . .), ( 2 1 )  

P = (11U/a)(l)o+Ep1$E2~2+...). ( 2 2 )  

w = U(wo + sw, + €2W2 + . . .), 

Here we have utilized the fact that the axial flow wo dominates for pipes of small 
curvature and torsion. The Navier-Stokes equation (9) and continuity equation (10) 
are then perturbed. The boundary conditions are that the velocities are zero on 7 = 1 
and that the mean pressure gradient is held constant. The primary flow is found to be 
Poiseuille flow in a straight tube: 

( 2 3 )  wo = 1 - q2, po  = - 4% + constant. 

4. The secondary flow 
Without going into the details, the order-s terms of equations (9)-( 10) are 
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(28) We set u1 = Rcose f -, (7) v1 = -Rsine-+AAg(V), df 
7 d7 

p1 = R cos eP(?), 

and substitute into (24)-(27). The boundary conditions are 

f(1)  =f'(l) = g(1) = 0 

and f, g, P bounded a t  7 = 0. The solution is 

(29) 

(31) f = -L( 2 8 8  r7-675+973-47), 

If a stream function $ is defined as 

we find (34) 

The first term on the right-hand side of equation (34) represents the two symmetric 
recirculating cells found by Dean (1927). The other term due to the effect of torsion is 
a general rotation motion. This term is important when h/R or ~ / ( K R )  is not negligible. 
I n  fact the torsion term is so dominant that the two recirculating cells become one 
cell when h/R 3 1/24 = 0.04167. Figure 3 shows the effect of torsion on the secondary 
flow. 

5. The effect on flow rate 
Since the co-ordinate system is not orthogonal the velocity w, in general, is not 

perpendicular to the 6, 7 plane. One must be careful in the calculation of flow rate. The 
covariant component of the velocity perpendicular to the 6, 7 plane is 

1 
4(933) g 3 i ~ z  = -pj ( 7 ~  + JG w). 

The flow Q is thus 

(35) 

The flow w1 is periodic in 6, and does not contribute to the flow rate. From equations 
(9), (10) we obtain the second-order equations: 
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FIGURE 3. Secondary flow. (a) A I R  = 0, (b )  h/R = 0.01, (c) AIR = 0.03, 
(d) AIR = 0.05. Values of constant $/R are shown. 
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Let the non-periodic (in 0)  component be denoted by a bar. Without going into the 
details, the solutions to (37)-(40) are 

+- R2 (-77"'+7578-2007'+ 175q4+ 1 0 5 ~ ~ -  148) 
230400 

The effect of torsion appears as the first term on the right-hand side of (42). But, when 
we substitute (23), (28) and (42) into (36), all the torsion terms cancel. The flow rate is 
found to be 

e2 [ 1541 (R)I N ( t ) 2  ] 
- I - -  - +- - - 1 + 0 ( € 4 ) ,  

Q _ -  
Q, 48 67200 (43) 

where Q, is the flow rate if the pipe were straight. To the order considered, torsion does 
not affect flow rate. Equation (43) agrees with the result for a toroidal tube obtained by 
Topakoglu (1967) and Larrain & Bonilla (1970). Notice also that, owing to  the non- 
zero curvature, the flow rate cannot be expressed in terms of Dean number alone. 

6. Discussion 
The helical co-ordinate system was first suggested by Nicholson (1910) who 

erroneously thought the system was orthogonal. For orthogonal co-ordinates, one can 
easily derive the governing equations by using simple scale factors (Batchelor 1970). 
But, for a non-orthogonal system as presented in this paper, tensor analysis is 
necessary to derive the governing equations. 

We see that the major effect of curvature is on the flow rate while the major effect 
of torsion is on the secondary flow. These effects must be considered when the Reynolds 
number is low. For example, suppose we have a typical helical pipe of KU = 0.1 and 
ru = 0.02. Our analysis of the secondary flow shows asymmetry of the two recirculating 
cells and relatively stagnant regions become appreciable when R is less than 20 (Dean 
number less than 80). The two-celled structure is completely destroyed when R is less 
than 4.8 (Dean number less than 4.6). Since the secondary flow is quite important in 
transport processes, the effect of torsion must be considered a t  low Reynolds numbers. 
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To order €2, torsion does not affect the flow rate. Curvature, however, has appreciable 
effect at  low Reynolds numbers. Equation (43) shows the R2 term is comparable to the 
R4 term when R is less than 40 (Dean number less than 320 if s = 0.1). In fact, in the 
limit of small E ,  when R c 5.67 the flow rate in a curved pipe is larger than that of a 
straight pipe. This fact was also predicted by Larrain & Bonilla (1970) for the toroidal 
pipe. 

The assumptions on curvature and torsion parameters are K a  = E 4 1 and 
7a = sh < 1.  As seen from figure 2, these assumptions are well satisfied for all practical 
purposes. Our assumption that the Reynolds number R is of order unity needs some 
comment, since higher-order terms involve increasingly higher powers of R and this 
may limit R to be less than one. However, the range of validity for our expansion can 
be extended to much larger R values. This is because the constant coefficients (e.g. in 
equation (43)) are very small. Using a computer, Larrain & Bonilla (1970) calculated 
the resistance coefficient for the non-twisted toroidal pipe as a polynomial up to R28 
and found that the series converged for Dean number (defined in equation (18)) 
smaller than 576. Since the helical pipe is similar, this gives R < 174s (R < 53 for 
E = 0.1) as the range of convergence. Computer-calculated extended series have also 
been discussed by Van Dyke (1978), who showed that inferences of the flow at much 
higher Reynolds numbers can sometimes be drawn. We expect, however, the effects 
of curvature and torsion would diminish as the Reynolds number is increased. 

Appendix. The Navier-Stokes equations in general intrinsic co-ordinates 
The continuity equation is 

Here J = ,/G and the Christoffel symbols are from equation (8). The momentum 
equations are 

a ( w )  [ : r e )  71 :I:(:) 71 ;[L(T) r "I J 

27 1 a~)+v(v ; I I+mv;22+Bv;33-Bv;23  ; (47) p ( ill as+zas 

V 
+U - - +r;3- +- - 

=--  -- - 7 a p  

+rz3- +- - - +r;3u+r;3-+r:3- 
G 1 
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